

University of Applied Sciences Nuremberg

Georg Simon Ohm
Faculty: Electrical Engineering, Precision Engineering,

Information Technology

Course of Studies: Media Engineering

Specialization: Media Production

Bachelor Thesis by

Michelle Utzelmann

Student ID number: 3587489

Illustrating Fundamental Programming

Concepts via a

Point-And-Click Adventure Game

Winter semester 2024/2025

Submission date: 12th August 2024

Supervisor: Prof. Dr. rer. nat. Matthias Hopf

Second examiner: Prof. Dr.(USA) Ralph Lano

Abstract German

Diese Bachelorarbeit beschäftigt sich mit der Frage, ob man die Grundlagen der

Programmierung abstrakt in einem Spiel darstellen kann.

Nach einer kurzen Einführung, in der erklärt wird, in der die Motivation für dieses

Thema gewählt wurde, folgt eine Recherche zum Thema erklärende Medien im

Bereich Programmierung. Anschließend wird das Spielegenre „Point-and-Click-

Adventure“ näher beleuchtet und auf Basis dieses Exkurses erklärt, warum das

Genre gewählt wurde.

Der Hauptteil der Arbeit dokumentiert die Entwicklung des eigenen Spiels

„Codeventure“ – angefangen beim Game Design über die Umsetzung in der Godot

Engine bis hin zum Testing und den daraus gewonnenen Erkenntnissen und

Abänderungen.

Am Schluss der Arbeit wird noch ein rückblickendes Fazit über das entstandene

Spiel und die verwendeten Tools gezogen.

Abstract English

This bachelor thesis is focused on the question, whether fundamental programming

concepts can be illustrated abstractly in a game.

Following a brief introduction and motivation, which explain the selection of this topic,

a research chapter analyses the already existing media on explaining programming.

The chosen medium, a ‘Point-And-Click Adventure Game’, is examined on its genre

and origin afterwards and based on this, an explanation on why this genre is chosen

follows.

The main part of the thesis documents the development of the game ‘Codeventure’ –

beginning with the game design, followed by the implementation using the Godot

engine and concluding with the testing session and its findings.

In the final chapter, a conclusion and reflection over the whole project and the used

tools finish the thesis.

Structure

1. Introduction ... 1

2. Motivation .. 2

3. Research ... 3

3.1 Books... 3

3.1.1 Hello Ruby .. 3

3.1.2. Einfach Programmieren ... 5

3.1.3. Get Coding! .. 6

3.2. Learning Tools .. 7

3.2.1 Scratch .. 7

3.2.2. MakeCode .. 9

3.2.3. Gamefroot .. 10

3.3. Games .. 10

3.3.1. Blockly Games ... 10

3.3.2. Minecraft .. 11

3.3.3. Roblox .. 12

3.3.4. TIS-100 .. 13

3.4. Conclusion .. 14

4. Point-And-Click Adventure Games .. 14

4.1. Definition ... 14

4.2. Origin .. 14

4.3. Famous and unique Point-And-Click Adventure Games 16

4.3.1. Mokey Island .. 16

4.3.2. Day of the Tentacle .. 17

4.3.3. Edna & Harvey ... 17

4.3.4. Fran Bow .. 18

4.4. Reasons for the Genre Selection .. 19

5. Development of Codeventure .. 20

5.1. Game Design .. 20

5.1.1. Story ... 20

5.1.2. World .. 23

5.1.3. Characters ... 25

5.1.4. Items .. 31

5.1.5. Quests .. 32

5.2. Implementation ... 37

5.2.1. About Godot ... 37

5.2.2. Structure of Codeventure in Godot... 38

5.2.3. Basic Mechanics .. 39

5.2.4. Additional Mechanics ... 46

6. Testing ... 51

6.1. Preparations ... 51

6.2. Procedure ... 51

6.3. Evaluation ... 52

6.4. Summary of the Feedback .. 62

6.5. Occurred Bugs .. 63

6.6. Changes ... 64

7. Conclusion and Reflection... 67

8. Acronyms .. 69

9. Bibliography .. 70

10. Figures .. 76

1

1. Introduction

Imagine the following everyday situation: you are in school, and an unannounced test

appears out of nowhere. And even if you did in fact learn the subject, you did not

quite understand it, so you will probably get a bad grade. This little scenario raises a

question: How exactly do we learn?

Chris Crawford [1], one of the most popular game developers back in the time of

early game development, game design and interactive storytelling icon and founder

of the ‘Game Developers Conference’, addresses this question in his lecture ‘The

Phylogeny Of Play’ [2], given at the ‘Cologne Game Lab’ in 2011. According to him,

the normal school system - having children sit down and listen – is inefficient. The

reason for this statement can be found in the human evolution: our ancestors quickly

learnt that they cannot copy the hunting tactics of animals, because they were built

differently. This is why they came up with an adjusted strategy: sneaking up, throwing

a rock at the prey, following the traces of the alarmed animal and repeating this

procedure until the prey was so exhausted, that it was easily slain. To perfect this

method, the ability to throw rocks precise and strong needed to be trained. According

to Crawford, this is the reason why children intuitively like to throw rocks into lakes

nowadays and sports (like handball) got invented. The enthusiasm over this playful

way to learn still lasts and has an impact on us today.

Based on the realisation that learning and playing are so deeply connected, another

big question follows: Is it possible to illustrate abstract concepts in a playful way?

2

2. Motivation

The question on how to learn properly accompanied me for some time but was

foregrounded lately. The first reason was my 4-year-old niece, who wants to learn

everything, while questioning everything and everyone. The second reason was

repeatedly being confronted with programming questions (for example on online

platforms) and realising that the questioner did not follow fundamental programming

concepts. Since I am very interested in programming, I decided to make the

explanation of fundamental programming concepts a main topic of my bachelor

thesis. I only had to pick a medium for it.

During my studies for Media Engineering, I learnt a lot about the different fields of

engineering and design – from audio and video technology over different

programming languages up to computer graphics. However, I figured out early that

my main interest is game development. So, when the question what exactly I wanted

to do for my bachelor thesis came up, I immediately knew that I wanted to do a

game. This also matches my opening question if it is possible to illustrate abstract

concepts in a playful way, because a fun game is one of the most entertaining media

possible.

Since it is my wish to make games for everybody, I want to mention that whenever I

use gender-specific pronouns within my thesis, they can be seen as a neutral form

and are meant to include every gender.

3

3. Research

The following chapter focuses on the main research tools that are used.

3.1 Books

Since the intention of this thesis is to illustrate programming concepts as simple as

possible, the research is restricted to books for children. There are, of course, a lot of

programming books for adults, but they all focus on how to code and the logic behind

it, which is why they are excluded.

3.1.1 Hello Ruby

‘Hello Ruby’ is a series of currently four books written by the Finnish programmer,

storyteller and illustrator Linda Liukas [3]. They are intended for children aged 4 and

older. All books are divided in two parts: a story and exercises for each chapter. In

so-called “toolboxes” additional information for the parents are given to explain a bit

further.

The first book is called ‘Adventures in Coding’ and explains the basics of

‘Computational Thinking’ (the ability to phrase the solution of a problem with

computational steps and algorithms).

Figure 1: Cover of „Hello Ruby. Adventures in Coding” [4].

4

The story follows the protagonist Ruby, who has a fertile imagination and loves to

question things (for example: she is told to put her toys away, so she leaves her

crayons on the floor because they are not toys). She goes on a treasure hunt her

father has set up for her in her self-invented world. During this, she learns about

dividing one big problem into many smaller ones, the logic of true and false, how to

make precise statements, how to make small algorithms like putting rope and sticks

together five times to get a ladder and about debugging. These topics are deepened

in the exercises.

The second book is called ‘Journey Inside the Computer’ [5] and shows the inside of

a computer in a playful, abstract way. The story is a bit like ‘Alice in Wonderland’:

Ruby follows the mouse in a ‘mouse hole’ (the USB connection) and ends up inside

the computer.

Figure 2: Ruby travels through the mouse hole [5].

There she meets a lot of characters who outline different concepts like the bits, who

can only say “yes” and “no” and need to team up to 8 bits to say more than that.

Moreover, logic gates, which teach about AND- and OR-operators, the CPU, who

bosses around, the GPU, who is an artist and many more. The exercises concentrate

on teaching understanding for the different hardware parts of a computer, how a

computer works and the separation between software and hardware.

5

3.1.2. Einfach Programmieren

Both books are written by Diana, a computer scientist, and Philipp Knodel, a political

scientist. They also founded the non-profit organisation ‘App Camps’, which develops

digital documents about programming and other digital topics for schools.

‘Einfach Programmieren für Kinder’ [6] is intended for children aged 8 and older. The

story follows Lea and Paul, who started to learn programming. The are accompanied

by Roby the computer, who provides the puzzles, Variabla, the ‘queen of variables’,

who provides hints and more information on topics and another character named

Datendrachen, whose main purpose is to star in the puzzles. Since the book is

addressed to older children, it explains more details about different topics like

Input/Output, algorithms, programming languages, debugging, events, variables,

data types, conditional statements, loops and functions. The book comes with an

app, which contains a lot of easy minigames (like sorting different steps of a task) to

explain the topics in a more playful way.

Figure 3: Cover of "Einfach Programmieren für Kinder" [7].

6

‘Einfach Programmieren lernen mit Scratch’ [8] is also intended for children aged 8 or

older. It introduces the graphic programming language Scratch (see section 3.2.1).

The book is set up as follows: in every chapter, different topics (like algorithms,

variables, loops, lists, functions and many more) get explained by the characters, the

BUGS and a related project gets introduced which can be edited as a remix. There is

also a corresponding YouTube playlist containing tutorial videos for each project.

Figure 4: Explanation of the Scratch programming environment [8].

3.1.3. Get Coding!

‘Get Coding!’ [9] was written by the worldwide community Young Rewired State,

which consists of technology-interested people under 18. It is intended for children

aged 9 or older. The book introduces the reader to HTML, CSS and JavaScript.

It is included in the research because it is also story-based. It follows the protagonists

Prof. Bairstone, Dr. Day and their dog Ernesto, who found a stolen diamond. The

reader needs to help them accomplishing so-called ‘missions’ to protect the jewel

against thieves. There are five missions: preparing a website, generating a password,

programming an app, planning a route, programming a reaction time based

minigame and building a working website. Every mission is divided into smaller steps

in which the needed knowledge gets explained.

7

Figure 5: Code skills explanation page [10].

At the end of each chapter, a sample solution is provided. Furthermore, there are

additional checklists of the learnt skills. Another story-related feature is the

‘encyclopaedia’, which contains additional background information to the story.

3.2. Learning Tools

There are a lot of online learning tools for programming, so the research was

restricted to three of the most popular ones. All of them use the engine ‘Blockly’,

which was developed by Google [11].

3.2.1 Scratch

‘Scratch’ is one of the biggest online programming communities and a graphic

programming language of the non-profit organisation Scratch Foundation. It is

conceptualised for children and teenagers between 8 and 16 years but is often also

used by adults. The newest version 3.0 was released in February 2019 and is

available in over 40 languages. Scratch is free-to-use and its development

environment is easily accessible via its website [12]. Unlike text-based programming

languages, programming in Scratch happens via blocks: the blocks are separated

into different colour-coded categories based on their function (for example

movement, sound, events, controls, operators, variables et cetera). The user then

simply needs to drag and drop them together as intended. Another feature is that

8

every project can be ‘remixed’: re-worked as a new game or even expanded with

own ideas [8]. This is also the reason why tutorials work so well: the ‘teacher’ can

provide the project with all necessary graphics, sound etc. and the ‘student’ can

simply remix it.

Since 2014 there is also an app version for children between the ages of 5 and 7

years, called ‘ScratchJr’. It is also free-to-use. The coding blocks in there are

simplified, what makes them even easier to use. This makes the introduction to

programming as simple as possible [13].

Figure 6: Interface of ScratchJR [14].

9

3.2.2. MakeCode

‘MakeCode’ is a free-to-use open-source online platform by Microsoft. It is divided

into three parts: the ‘MakeCode Arcade’ editor, in which the user can develop Arcade

minigames, the ‘micro:bit’ editor, in which pocket-sized computers can be

programmed without any physical hardware, and ‘Minecraft Education’, which

provides the ability to code mods (video game modification) for ‘Minecraft’. The last

one requires a copy of the education version of the game (see section 3.3.2). In

every part are several projects and corresponding tutorials available. The editors use

the MakeCode library, which provides a lot of different blocks and extensions. There

is also the possibility to switch to a text-coding mode and to program in JavaScript or

Python [15].

Figure 7: MakeCode Arcade programming environment [16].

10

3.2.3. Gamefroot

Another online editor is ‘Gamefroot’. A free-to-use version is available, but it requires

creating an account to save the projects, because Gamefroot is cloud-based. The

usage of the blocks works like Scratch [17], but since November 2022 there is also a

JavaScript-block available to integrate code written in JavaScript directly [18].

Figure 8: Gamefroot programming environment [19].

3.3. Games

After looking at media that is meant to teach, the last step of the research was to

have a look at the most playful media: games themselves. And there are a few very

interesting examples which will be looked deeper into in the following chapter.

3.3.1. Blockly Games

These games, which also use the ‘Blockly’ engine, were developed by Neil Fraser, a

software engineer at Google. The code is free and open source [20]. The game

consists of eight minigame-puzzles and all of them need to be solved by using

blocks. They can be played on the corresponding website [21].

11

Figure 9: Blockly puzzle game [22].

3.3.2. Minecraft

Minecraft is by far one of the most successful games of all time. It is a so-called

‘sandbox game’, which means that it provides players with the ability to create nearly

anything they want. The community loves to be creative (there are even players

spending years of work to build monuments like ‘Hogwarts’ from ‘Harry Potter’ [23]).

Many people also create mods to change several aspects of the game or include

new ideas. Sometimes these mods are also educational like ‘ComputerCraftEdu’ [24].

This mod adds programmable robot turtles with a tile-based interface, which can be

programmed to do tasks like mining or building things.

Figure 10: Interfaces for programming the robot turtles [25].

12

In 2016 Microsoft bought the mod ‘MinecraftEdu’, which was developed by teachers,

and with it created the special version ‘Minecraft Education’, which also implemented

different programming languages like Scratch to use in the game directly and create

mods [26].

3.3.3. Roblox

Likely successful is the sandbox game web portal ‘Roblox’. Users create and share

games there. It even comes with an own engine called ‘Roblox Studios’ and uses the

script language ‘Lua’ [27].

Figure 11: Roblox Studios engine [28].

Both are easy to learn and mostly self-explanatory. Roblox even has its own in-game

currency ‘Robux’. Whenever a player buys something in a game inside Roblox, the

developer gets percentage of the value. This is the reason why a lot of young people

got very attracted into creating games there [29].

13

3.3.4. TIS-100

The opposite end of the spectrum of programming games is occupied by

Zachtronics. In ‘TIS-100’ the player needs to repair a machine by rewriting code

segments. It is advertised as “the assembly language programming game you never

asked for.” [30].

Figure 12: Interface of TIS-100 [31].

To achieve this goal, the game comes with a reference manual file, which explains

the system’s architecture and instructions. This game is only fun to play for people,

who have knowledge of computer sciences and are interested in pipelining (the flow

of data through components). The level of difficulty of the logic puzzles increases

quickly, but it serves a select niche in programmers searching for a challenge, as only

122 negative reviews out of 3,762 reviews in total on the gaming platform Steam

show [30].

14

3.4. Conclusion

As my research shows, there are already a lot of different attempts, which try to teach

programming in a playful way – from low to high level. The books impressed me the

most. They have very different approaches when it comes to their way of teaching.

The books for older children count on a direct confrontation with programming

languages, mixtures of educational and story books and explaining concepts via

minigames. The books for younger children rely on explanation through the

characters. This is exactly what I want to try in my own game, but in a technical

detailed way. The graphic programming languages, especially ‘ScratchJR’, show that

programming with dragging and dropping blocks works in almost every age class, so

I decided to use it for the code quest (see section 5.1.5., ‘Opening the door’).

4. Point-And-Click Adventure Games

Nearly everybody has already heard about this genre at least once. The following

chapter explores what exactly a Point-And-Click Adventure Game is, where it comes

from and will also give an overview over very successful representatives. Based on

all of this, it will then be pointed out why this genre was chosen.

4.1. Definition

The Point-And-Click Adventure Game is a subcategory of the Adventure Games. The

main element of Adventure Games is the narrative aspect – to transport a story via

the game and to make progress by solving puzzles and quests [32]. The Point-And-

Click Adventure Game category is classified by its typical control system, which

origins are explored in the following passage.

4.2. Origin

The origin story of Adventure Games [33] started back in 1975, when the student

Don Woods used a text-based program for an interactive tour of the Mammoth–Flint

Ridge Cave System by his professor William Crowther, to create the first text-based

Adventure Game ‘Adventure’ (nowadays also known as ‘Colossal Cave’). Back then

passed around among the universities using the ARPANet (the precursor of the

internet), this game inspired a group of MIT-students to found the company Infocom

15

and to release a final version of their text-based Adventure ‘Zork’, which could also

be played on home computers. This type of Adventures only consists of text

fragments, which tell the action happening in the scene. The player has to type

commands with the keyboard, which get then parsed. In the beginning, the amount

and complexity of these commands were very limited, but increased later.

In 1980 the first Graphic Adventures appeared and little by little new systems and

controls were developed: starting with ‘Mystery House’, which was mainly a text-

based Adventure with simple images consisting of vector lines. It was then followed

by ‘The Hobbit’, which already had self-acting NPCs (Non-Playable Characters)

whose actions affected the game. From ‘King’s Quest’, which showed the player as a

graphic figure on screen and was controlled by using the arrow keys, to ‘Labyrinth’,

which was based on the corresponding movie and had an interface with control

options arranged in a list, a huge advancement and diversity in genres happened.

Finally, in 1987, the first Point-And-Click Adventure Game entered the market:

“Maniac Mansion”. It established the SCUMM (Script Creation Utility for Maniac

Mansion) system: 15 permanently shown commands in the lower third of the screen.

The player needs to click on a command and an inventory item or interactive area to

create an entire command, which is shown in the command line. For example, “Go

to” and “Door” build the command “Go to Door”. This system was eponymous for

‘Point-And-Click’.

Figure 13: Maniac Mansion with the SCUMM interface [34].

16

‘Maniac Mansion’ also established having multiple playable characters and so-called

‘cutscenes’ (scripted scenes which show action like a movie and the player cannot

exert influence on it).

The number of commands in SCUMM were gradually decreased over time. The

thereby free space was used for creating a graphic interface for the inventory instead

of text. Later, the whole system was often replaced by a completely graphic interface

with symbols instead of the commands, for example the visual of a hand for the

command “take”.

4.3. Famous and unique Point-And-Click Adventure Games

The following section lists a few successful representatives of Point-And-Click

Adventure Games.

4.3.1. Mokey Island

Debuted in 1990 with ‘The Secret of Monkey Island’, the series nowadays covers six

games, with the newest one ‘Return to Monkey Island’ released in 2022. The original

game is still one of the most famous Point-And-Click Adventure Games of all times

and everyone who has played it will never forget the name “Guybrush Threepwood”

(the protagonist). The series is well-known and loved for its on-going story line and

well-written characters [35].

Figure 14: The Secret of Monkey Island, 1990 [36].

17

4.3.2. Day of the Tentacle

Released in 1993 “Day of the Tentacle” is the sequel of “Maniac Mansion”. It is

famous for its bizarre style and its story, in which the player needs to enter and

interact in different timelines [37].

Figure 15: Day of the Tentacle, 1993 [37].

4.3.3. Edna & Harvey

Starting as a student graduation project, ‘Edna & Harvey: The Breakout’ was

released in 2008 [38]. It is well-known among players for its non-linear storytelling

and the fact that every item can be combined with every other one to get a unique

reaction. The setting, an asylum, also grants the possibility to create inimitable

situations, for example giving a detached telephone earphone to a fellow inmate and

listening to a whole telephone call.

Figure 16: Edna & Harvey: The Breakout, 2008 [39].

18

The sequel ‘Edna & Harvey: Harvey's New Eyes’ was released in 2011 in Germany

[38]. It is in part connected to the plot of the first game and loved for its morbid

humour.

Figure 17: Edna & Harvey: Harvey's New Eyes, 2011 [40].

4.3.4. Fran Bow

Released in 2015, ‘Fran Bow’ is a perfectly balanced mixture of Point-And-Click

Adventure Game and horror game. It has a creepy story about mental disease and a

unique art style. In Germany, it has an age restriction of 16 years [41].

Figure 18: Fran Bow, 2015 [42].

19

4.4. Reasons for the Genre Selection

As the previous sections show, Adventure Games have been a great medium to

transport a story to the player for a long time and are not fixed on a certain setting.

Since the basic idea of this thesis is the explanation of programming concepts via the

story, developing an Adventure Game is determined to be a good choice. The

decision towards the subcategory Point-And-Click Adventure Game is made because

of its easy-to-learn controls. Instead of having the need of a tutorial to teach the

controls to the player, clicking on an area to walk there and clicking on highlighted

areas and characters to interact are supposedly intuitive commands. This assumption

is also confirmed during testing sessions, because none of the play testers had

problems in learning the controls.

My personal preferences affected this decision as well: I grew up playing Point-And-

Click Adventure Games and I still love playing them nowadays, especially ‘Edna &

Harvey’. There are often discussions whether the Adventure Games genre is dead

(recently after the famous German game studio Daedalic Entertainment stopped

developing games). In my opinion, these discussions are untenable because they are

already going on for too many years, as the blog entry ‘The Death Of Adventure

Games’ [43] by game developer Al Lowe, outlining the discussions on this topic at the

Game Developer Conference back in 1999, shows. Quite the contrary, the Adventure

Game genre keeps persistent and timeless, which qualifies it for this thesis. The

evolution of better hardware and illusive graphics may have pushed other genres to

the top of the charts, but there will always be people who prefer ‘more retro’ games

and indie studios, who want to focus more on the told story of their game.

Furthermore, creativity knows no boundaries. Jan “Poki” Baumann, the game

designer behind the Daedalic Adventure Games, released a Point-And-Click music

video game only recently in May 2024 [44].

20

Figure 19: Dünnes Eis, 2024 [45].

5. Development of Codeventure

The development of ‘Codeventure’ (a word combination of ‘code’ and ‘adventure’) is

described by the following sections. Since it is a one-person-project, a lot of the steps

happened simultaneously.

5.1. Game Design

When it comes to developing a game, the first step is always the game design (the

conceptualisation of the story, world, characters etc.). Some of the details are

changed and adjusted during the process of developing. This is the reason why the

result is not a one-to-one corollary of the initial concept, but this is a normal process

in game development.

5.1.1. Story

In the initial concept paper, the main story is simply described as “protagonist falls

into world from which he wants to escape, therefore he needs to complete a code”.

During development, the story is advanced and improved to the final story, which is

explained by the following passages.

Prologue

The protagonist of the game is a pixel called Pixie and the first encounter is during

the start dialogue in the prologue. There, the player learns about surroundings and

Pixie’s thoughts and can decide, how Pixie proceeds (for example: the alarm clock

21

rings, and the player can decide whether to continue sleeping or to wake up). At the

end of the prologue, Pixie takes an assumed short-cut and ends up in the software

part of the computer (this will be explained further in section 5.1.2.), where the main

game starts.

Figure 20: Prologue of Codeventure.

Main Game

After realising, she ended up in an unknown environment, Pixie wants to go back

home. To do so, she needs to complete the code to open the door, but some parts of

the code, so-called ‘code fragments’, are missing. To find them, Pixie needs to help

the different residents (who resemble programming concepts) in solving their

individual problems (hereinafter called ‘quests’).

22

Figure 21: Start of the Main Game of Codeventure.

Epilogue

Once the player finishes the code successfully and enters the open door, the

epilogue starts. It shows how Pixie returns home and talks to Pix, another pixel, who

does not believe her story. But Pixie is confident to convince all pixels over time.

While the dialogue continues, the initially black background increasingly lights up

(this resembles the other pixels to light up) and a “The End. Thank you for playing!”

writing is shown.

Figure 22: Epilogue of Codeventure.

23

5.1.2. World

Worldbuilding is the process of constructing a fictional world and is considered to be

the most difficult part in the game design problem. This is because the game

designer needs to create the right amount of immersion. The world must transport

and explain itself while being so conclusive, that the player simply starts to believe

that this world is possible. This sometimes means, that an idea, which seemed to be

good at first, does not fit into the final world and needs to be removed from the final

concept. A huge part of worldbuilding is to write the story, as already explained in the

previous chapter. Another one is to create the world itself.

World Setting

Since the goal is that the game has the resemblance to the inside of a computer in

an abstract way, the whole world is divided into two parts to represent the software

and hardware part. The setting of the game is the software part, a town called

‘Software Town’. The other place, ‘Hardware City’, is never shown, but it is mentioned

that it is divided into a lot of districts – a reference to the fact that there are a lot of

different hardware devices. Normally, it is not possible for the habitants of the

different places to travel in-between, but due to an error the protagonist of the story,

the player ends up in the software part.

Visual Realisation

All visuals (background screens, character designs, animation sprite sheets etc.) are

digitally painted using the graphics software Clip Studio Paint [46].

Map

The map consists of eleven screens. It was originally planned with nine screens, but

changes were made due to rectifying the world. All screens are named after locations

of a real town, for example left and right market, to keep the idea of the town setting.

24

Figure 23: Initial design with nine screens.

Figure 24: Final design with eleven screens.

25

To connect the setting visually to the setting, the look of ‘Software Town’ is based on

a motherboard.

Figure 25: Comparison of a motherboard [47] and the background design.

5.1.3. Characters

Characters are a very important part of every game. They need to be concepted to fit

into the world and to be relatable without trying to explain everything about them to

leave room for interpretation. This is also needed to keep the level of immersion high,

since too man explanation would make it inauthentic.

Pixie

The playable character is called Pixie. Pixie is a pixel, who normally ‘lives’ on the

display. In the prologue, she takes an unknown way and ends up in ‘Software Town’.

She is helpful, curious and trusty. The default animation, in which Pixie swaps

between the colours blue, green and red, is a reference to the sequence of the

‘Bayer Pattern’ [48], which is used for the arrangement of colour filters on image

sensors in digital cameras.

Figure 26: Animation sprite of Pixie.

26

Figure 27: Bayer Pattern [49].

AL

AL is the first NPC the player meets. He is located on the left side of the market, next

to the big exit gate. AL is short for ‘algorithmic compiler’. He addresses the main

quest to the player – to finish the code – and refuses to open the door as long as the

code is incorrect. Also, the player can ask him helpful questions during the side

quests, which appear based on the game progress. AL also provides the last code

fragment ‘this’, when all other fragments are added to the code. AL’s ambition is to

get a correct code. The other characters describe him as perfectionistic and pedantic.

Figure 28: AL.

Chi

Chi resembles an array. Her name is short for ‘child’. This is a clue to the side quest

she provides – teaching her about inheritance to help her become a ‘grown-up’. After

finishing the quest successfully, she provides the player with an inventory. Chi is

found in Pa’s house, where she lives according to the story. The design of the arrays

resembles a box to illustrate the similarity between storing objects in boxes and

storing data in arrays.

27

Figure 29: Chi with and without ribbon.

Pa

Pa also resembles an array. His name is short for ‘parent’, which states his

relationship to Chi. He is never shown in-game because he left the city to visit distant

relatives. He took the key for his safe with him but lost it on his way. The player

needs to find it during the game. He also likes to store information about different

programming related themes, which the player can read on the discs on the table in

his house.

Boo

Located in the other house is Boo. They are a Boolean. Since a Boolean can have

two states (true and false), Boo have two personalities. The first personality (true) is

very kind and helpful, but the second one (false) is suspicious and angry. The player

needs to earn the trust of the two personalities to receive a remote and the code

fragment ‘bool’. With this remote, the player can switch between true and false. The

design of Boo resembles a coin as a reference to the common phrase “two sides of a

coin”.

Figure 30: Boo; true and false.

28

Lacky

Lacky can be found on the right side of the market, sobbing. She resembles the left

one of the curly brackets. She gives the player the quest to find the right curly

bracket, Racky. Inspiration for this character was the common mistake during coding

to forget setting the right bracket. The player needs to reunite the two brackets to get

the code fragment ‘brackets’. The name Lacky is an allusion to left bracket.

Figure 31: Lacky.

Racky

Racky resembles the right curly bracket and can be found on the bridge. He saw the

array Pa leaving town and dropping his key, so he went after him to give it back. But

he missed him and got stuck on the bridge, which got closed over constructions.

Once the player encounters him for the first time, Racky goes back to Lacky. There

the player can borrow the key from him. The name Racky is an allusion to right

bracket.

Figure 32: Racky.

29

Lu

The name Lu is short for loop as this character resembles a while-loop. When the

player meets her at the top of the hill for the first time, she is stuck in an endless loop.

The player needs to find the break condition to help her. After successfully doing so,

the player is rewarded with the code fragment ‘while’. In her endless loop phase the

design of Lu resembles an infinity symbol. After helping her, her design is based on a

ring.

Figure 33: Lu before and after helping her.

Flora

Flora is never shown in-game, but she is mentioned by Lu. She is a for-loop and Lu’s

cousin.

Conny

The character Conny assembles the programming concept condition. The first

encounter with her is also on the top of the hill, where she gives hints on how to solve

Lu’s problem. After helping Lu, she provides the code fragment ‘if’. Since conditions

are dependent on Boolean values, Conny is also dependent on Boo: she is terribly

afraid of Boo during their false state, so she disappears whenever the player

switches the bool state to false. If the player has already gained the code fragment, it

disappears as well, and the player needs to receive it again. When switching back to

the false state, Conny appears again (if Lu’s problem is already solved, she appears

on random spots). To get the fragment permanently, the player needs to teach Conny

not to be afraid of Boo first. Conny’s design is based on a question mark because of

the semantic meaning of the word “if”.

30

Figure 34: Conny.

The Bugs

The personality of The Bugs resembles that of the stereotypical goblin. They like to

steal parts of the code or other tools. Since bugs are responsible for a code to crash

in real life, they represent the antagonists of the game and are the reason why the

code is missing parts. During conversation they also mention, how wonderful an

incorrect code is in their opinion and that they are collecting the things they steal.

Their design resembles the origin story of the word “bug”, in which a code was not

working because of a moth in the hardware [50]. The Bugs are located in their cave

and the player needs to earn bits to trade with them.

Figure 35: Design of the Bugs.

31

The Ints

The Ints (short for integers) can be found in the valley. Because of their sheer

number, they are deemed to be the construction workers in town. But they stopped

working because they are preparing for a racial war against the floating-point

numbers, the doubles and floats (they are never shown in-game). The player needs

to stop this by finding the caster tool to show them that they are all the same. After

doing so successfully, the player earns the code fragment ‘int’ and the construction

blocker at the bridge vanishes.

Figure 36: Design of the Ints.

5.1.4. Items

This section provides an overview of all items the player can get during the game:

Figure 37: Overview of all items which are relevant for the game progress; from left to right: caster, break
condition, remote, Boo’s key, Pa’s key, bits.

32

Figure 38: Overview of all collectable code fragments; from left to right: this, int, while, if, bool, brackets.

5.1.5. Quests

There is no Adventure Game without quests to solve. This is why the following

section explains all quests of ‘Codeventure’.

Opening the door

Opening the door at the left side of the market is the main goal of the game to let

Pixie return to her home. For the achievement of this goal, the player needs to finish

the other quests first. After successfully collecting all the code fragments, the player

needs to drag them in the right places and to toggle the relational operator button to

the right operator. The code itself is a mixture of different programming languages, a

so-called ‘pseudocode’ (a more readable, not functioning code):

Figure 39: The pseudocode which opens the door.

33

Getting an inventory

To get the inventory, Chi must become a ‘grown-up’ array. The hint to solve this is

directly given in the dialogue, in which the player learns about her problem for the

first time: the inheritance keyword “super”. On the right side of Pa’s house are discs

containing different text, which can be read by the player. They contain short

explanations about data structure, composition, inheritance, break condition and

bugs. Whenever the player reads a disc, a new dialogue option with Chi gets

unlocked. To get the inventory, the player needs to read the disc about inheritance

(labelled as “I.h.”) and to talk about it with Chi.

Figure 40: Design of the opened inventory GUI.

Getting the inventory is the first and only thing the player is told directly to do, but he

can also decide to do another quest first. But if he does not have the inventory, he

cannot get any items.

Convincing Boo

After learning that the bool-fragment only provides one state, which depends on the

current state of Boo, the player needs to succeed in the True or False minigame to

get the remote for switching states. The minigame is a quiz in which different

statements must be rated as true or false. Once the player finishes the quiz

successfully, he is granted the remote and can switch Boo’s state, which also causes

the bool-fragment to switch.

Finding Racky

To find Racky, the player needs to end the racial conflict of the Ints first. After that,

the blocking construction barricade disappears by asking the Ints to finish the work,

and the player can enter the bridge.

34

Figure 41: Design of the construction barricade which blocks the bridge.

Ending racial conflict

Once the player encounters the Ints in the valley, he quickly learns, that they are

planning to have a racial war against the floating-point numbers. To prevent this, the

player needs to get the caster and cast the integer resembling the value One to a

floating-point number with it.

Figure 42: Design of the casted One.

Trading the caster with bits

The Bugs can be found in their cave once the player talked to the number Zero about

the stolen caster. Also, the player needs to succeed at the Whack-A-Bit minigame, he

can trigger by talking to Zero, to gain bits. He needs them to get the caster from the

Bugs.

35

Figure 43: The Bugs in their cave.

Finding the break condition

The break condition is in the safe in Pa’s house. The player needs to borrow the key

for it from Racky. This is only possible, if he had already found him in advance, has

read the disc about the break condition and talked to Lu.

Teaching Conny about the false state

If the player has already obtained the if-fragment from Conny after helping Lu and

switches Boo’s state to false, he will notice that the fragment and Conny disappear.

He then needs to talk to Lu about it, to hear a rumour that it has something to do with

Boo. In a conversation with Boo’s false side on the matter, he learns that Conny is

afraid of Boo’s false side. To solve this conflict, the player needs to switch Boo to

true, to lock the door by using Boo’s key with the safety system and to switch Boo

back to false. Doing so triggers a dialogue with Conny, in which the player can

convince Conny of not being afraid anymore – a wrong answer ends the dialogue

immediately and the player needs to retry. As soon as this problem is solved, Conny

and her fragment do not disappear anymore.

36

Figure 44: Boo and Conny reconciled their differences.

Getting the last code fragment

Once the player has finished all side quests, he needs to talk to AL again, to gain the

this-fragment. With this fragment, the code can be completed and tested correctly.

Figure 45: The correct code got tested.

37

5.2. Implementation

Before starting to implement ‘Codeventure’, a so-called ‘greyboxing’ project, an

unfinished test game itself, is built. Within this, the mechanics are implemented and

tested before transferring them to the ‘real’ game. The implementation of

‘Codeventure’ took about four months to complete. To add version control (which

provides the possibility to go back to an older version and to keep track of the

changes), a private repository for the project was created on GitHub.

5.2.1. About Godot

Figure 46: The Godot engine logo [51].

Godot is an open-source game engine used to develop 2D and 3D games [52]. It

works with so-called ‘nodes’, which get stuck together to build the ‘scene tree’ of the

game. There are plenty of different types of nodes, for example CharacterBody2D,

Sprite2D, TextureRect, Button etc. They are all listed under the main node-types

Node, Control, Node2D and Node3D. Only nodes like the Animation Player are

separate. Every type of node comes with a different pre-defined behaviour and

signals. The communication between the nodes works on the concept “call down,

signal up”. This means that a child node can be connected to the parent node and

send a user defined signal, for example when a state of a variable changes. The

parent node can directly access to the child node and command the execution of a

specific method. Two nodes that are not directly connected can communicate via a

parent node that has access to both.

Another unique concept of Godot is the utilisation of scenes. In other game engines,

scenes are used as sections of your game (for example a main menu, level 1, level 2

and the credits screen for a simple platformer game) and pre-defined, reusable game

objects referred to as ‘prefabs’. These features are combined in Godot: a scene can

be a level, a character, a dialogue system etc. These scenes are all reusable and

once they are defined, they can be added to the scene tree as a new node.

38

Whenever something in the original scene gets changed, it also changes in the node

in the scene tree.

In summary: the game consists of a scene tree, which consists of nodes and scene,

which again consist of nodes [53].

5.2.2. Structure of Codeventure in Godot

Figure 47: Scene tree of the main game of Codeventure.

The supreme node of the scene tree is the ‘Game Master’. It is responsible for

conveying information between the other nodes, holds all game-progress related

variables and observes the correct function of the mechanics (for example blocking

the player movement while a minigame is opened). All backgrounds and the tile map,

which defines where the player can go, are in the ‘World’ node. The player is a node

itself, while all the NPCs are part of the ‘Interaction Manager’, which contains every

interactable object. The ‘Camera2D’ node contains the ‘Dialogue Manager’ and the

‘Inventory Manager’ to make them follow into every screen. Teleport and spawn

areas (see section 5.2.3., ‘Screen Switching’), collectables and areas for position

changes are also cleaned up under nodes to make the scene tree clear. Every

additional mechanic (the code display and the minigames) is a node on its own. The

39

scene tree also contains a timer, which ensures that the first dialogue does not start

in the exact moment, the main game is loaded.

5.2.3. Basic Mechanics

‘Basic mechanics’ are the mechanics which are essential for a Point-And-Click

Adventure Game and will be explained in the following section.

Player movement

Since the game is a Point-And-Click Adventure Game, the triggering action for

moving the player is a left click of the mouse. When the game manager registers a

left click, it calls the player-function move_player(), which sets a Boolean variable

called player_moving on true. The responsible script for the movement is the

_physics_process()-function (which gets called every frame).

Figure 48: _physics_process()-function of the player script.

If the player is not blocked and player_moving is true, it stores the global click

position and calculates the target position based on the current position of the player.

As long as the distance to the click position is bigger than three (a value, which was

determined by testing different values and choosing the one value subjectively felt

the most natural), the velocity is calculated from the target position and a constant

integer speed (which was also tested and adjusted) and the pre-defined Godot-

function move_and_slide() is called, which causes the player to slide to the target

position. Sometimes a click position needs to be overridden due to clicking outside of

40

the world limits or to move the player to a certain position for a dialogue. For the first

case, the old position of every movement gets stored and compared to the new

position. If either the x- or y-position stays the same and the absolute difference of

the other corresponding value is bigger than one, the click position is set to the

current position and the movement is stopped. As an early game design decision,

player movement was prevented while a dialogue was running, the inventory was

opened or the player was already moving. This was later changed due to findings

during the testing sessions (see section 6.6.). The principle of the movement script is

based on the tutorial video by the YouTube channel Kron [54].

Screen Switching

Switching between screens was intentionally planned to happen due to a dynamic

screen switcher. While developing the greyboxing project to implement and test the

needed mechanics, a main problem for its use in Godot appeared. Whenever a new

scene is loaded, the current scene and all its nodes are freed. This is why using a

dynamic screen switcher in a Point-And-Click Adventure Game, where the player

needs to revisit the different screens, which change depending on the game

progress, is not feasible. Instead of the dynamic screen switcher all the screens are

in the same scene and a dynamic camera updates its position based on the player

position. This system was inspired by the according YouTube tutorial by Maker Tech

[55]. To allow the player to switch between the screens without getting stuck in the

border limit, teleportation and spawn areas are used. The teleportation area is an

Area2D with a ColisionShape2D, a Button and a Label as child nodes. The button is

needed to show a label with a description of where the area leads while hovering it.

When the player enters the collider, the teleportation area recalls the position of its

addressed spawn area and calls the player function update_position() with these

coordinates. Because of this, the player gets automatically transported to the spawn

area and the camera follows.

41

Figure 49: Structure of the world in Godot including the teleportation and spawn areas.

Inventory

The ‘Inventory Manager’ is the node, which controls the inventory system. It contains

the button to open and close the inventory by toggling it and the ‘Inventory GUI’

(graphical user interface). The ‘Inventory GUI’ itself is a scene and contains the

background visual of the box and a grid container (a container, which arranges its

components in a uniform layout). Inside of the grid container are the inventory slots.

This description, however, exclusively addresses the frontend, i.e. the visual part of

the inventory. To make it functional, the Inventory GUI is connected to a stored player

inventory resource (a data container), which operates as the backend. Whenever an

item is added to the inventory, it gets added to the backend as a resource. After that,

the Inventory GUI gets updated, meaning the slots get filled up with the items stored

in the backend.

42

Figure 50: update()-function of the inventory GUI script.

Clicking an item in a slot makes it an ‘item in hand’, which follows the cursor and

makes it possible to interact with the world, while the backend resource of the item

gets removed.

The inventory system is based on the inventor tutorial chapters 19 -22, 25-27 from

the tutorial series ‘How to Make an Action RPG in Godot Season 1’ by the YouTube

channel Maker Tech [56]. It was later supplemented with additional functions for (re-

)inserting an item after a dialogue, deleting the ‘item in hand’ after a dialogue and for

finding and deleting a certain item in the inventory (used for deleting the if-fragment).

43

Figure 51: Additional functions of the inventory GUI script.

To connect the inventory closer to the story, its design is based on Chi’s colour

palette. The inventory slot background shows a ‘0’ while being empty and a ‘1’ when

it is filled as a reference to a binary signal.

Figure 52: Design of the inventory slot background; empty and full.

44

Dialogue System

Every Point-And-Click Adventure Game contains a lot of dialogues to transport the

story. To get a reliable dialogue system, the scripting language ink is used.

Figure 53: ink logo [57].

Ink is a narrative scripting language developed by the video game developer studio

inkle, which is specialised in story-driven, text-based video games like the award-

winning adventure ‘Heaven’s Vault’ released in 2019. The idea behind ink is to

separate text and code while writing the texts, but already implementing logic. It uses

a simple and easy to learn syntax. The editor for ink is called ‘Inky’ and it is, like the

language itself and all the game engine integrations, open source [57].

All dialogues are written in the ‘Inky’ editor. The text is made interactive by using

certain annotations. The course of a dialogue can be easily tested in the preview

window on the right side of the editor. Also, ink variables, like Booleans, can be

initialized and can be changed during the dialogue based on the decisions.

45

Figure 54: Second dialogue of AL written in the Inky editor.

Figure 55: Second dialogue of AL in the preview window of the Inky editor.

Once a dialogue is finished, it is exported to a JSON file. To implement ink into the

Godot engine, the open source addon ‘inkgd’ by Frédéric Maquin was used [58]. To

get used to working with ink in Godot, the Chapters 0-3 of the ‘Godot & Ink’ tutorial

playlist on YouTube by Nicholas O'Brien are used as a guide [59]. The logic for the

Dialogue System is implemented as follows: the so-called control node ‘Dialogue

Manager’ contains arrays with all dialogue JSON files for every character. Once a

46

certain dialogue needs to be loaded, the file is given to the in the addon pre-defined

‘Ink Player’ and the subordinated control node ‘Ink Handler’ gets the task to start the

story. By doing so, it shows the ‘Dialogue box’ (a colorRect and generated answer

buttons) and loads the story depending on the decision of the player.

Figure 56: Structure of the corresponding nodes in the scene tree.

The ‘Ink Handler’ is also the node, which observes ink variable, changes in-game

variables according to them and sends signals to other nodes like the ‘Game

Manager’ to transfer game progress. Sometimes the value of an ink variable needs to

be overwritten because of in-game progress, which is why a function for this case is

also added.

5.2.4. Additional Mechanics

In addition to the basic mechanics, more mechanics that are needed to realise the

concept were implemented. They are explained further in the following section.

Drag & Drop display

The system is based on the video tutorial by the YouTube channel Dicode and later

extended and adjusted [60]. It contains platforms (the placeholders where code

fragments are missing) and the fragments as so-called ‘draggables’. Every platform

contains a Boolean, which indicates if the platform is occupied, a unique platform

number, a variable to store the draggable number in it and two sprites. The basic

darker sprite is the default one. A brighter sprite gets set active to indicate all

unoccupied platforms while the player drags a fragment. The whole movement logic

happens in the draggable script: The draggable node has a subordinated Area2D

node. Its mouse_entered()- and mouse_exited()-signals are connected to the

draggable script. Once the player hovers over a draggable, it is slightly increased,

and a Boolean named draggable is set to true. If the mouse leaves the draggable

again, this is reset.

47

Figure 57: _process()-function of the draggable script.

While the draggable Boolean is true, the _process()-function, which gets called every

frame, awaits input in the form of a left click. In the occurrence of such event, the z-

index of the draggable is set to 1 (to prevent the draggable from disappearing behind

buttons), the initial position and platform are stored, the offset between the click

position and the position of the draggable are calculated and the is_dragging

Boolean of the superordinated ‘DragDrop Manager’ is set to true. The change of the

Boolean value is needed to prevent dragging multiple fragments. If the left mouse

button stays pressed down, the fragment follows the cursor by setting the global

position of the draggable to the global mouse position minus the offset. If the left

mouse button is released, the z-index is set back to 0 and the is_dragging Boolean

back to false. After this, a tween (an object to make small animations) is created. If

the Boolean is_inside_dropable is true (changed via the

_on_area_2d_body_entered()- and _on_area_2d_body_ exited()-signals of the

Area2D node), a short sliding animation to the new position is triggered, signals to

update the backend get emitted and the platform is now occupied. Else, a short

sliding animation back to the initial platform is triggered.

As a result of testing, the whole system was changed to a more user-friendly system

(see section 6.6.).

48

The ‘DragDrop Manager’ script is responsible for operating the backend (which is

used to check if the code is correct and to update the bool-fragment according to

Boo’s state), to search and delete a fragment (used for the disappearing if-fragment)

and to add the code fragments as draggables to the code display.

True or False minigame

The minigame to get the remote from Boo is a simple logic quiz to demonstrate the

meaning of the states ‘true’ and ‘false’ of a Boolean.

Figure 58: True or False minigame in-game.

On the top right of the drawn display is a help button, which is indicated by the label

'?'. By clicking on it, a top layer with an explanation text and a return button is shown.

Located at the end of every question is a toggle button, which is in a neutral position

at the beginning of the game and shows ‘?’. After clicking it for the first time, it

switches to ‘true’ and after that, it can be toggled between ‘true’ and ‘false’. While

toggling the button, the variable state is also adjusted to the selected answer. Every

button also contains the export variable answer, which has the state of the correct

answer. Instantiating a variable as ‘export’ means that the value of this variable can

be edited directly in the Godot property-editor. By clicking the exit button to submit

the answers, the check_correct()-function of the ‘Minigame Manager’ is triggered. In

this method, every toggle button of the button array is checked by comparing the

variables state and answer. While closing the minigame overlay, the ‘Minigame

Manager’ emits the closing signal together with the variable correct, which is true if all

answers are correct. Depending on this variable, different dialogues get triggered: if it

49

is true, Boo congratulate, and the player gets the remote. If it is false, the player gets

the opportunity to re-try the minigame immediately or later. By doing so and re-

starting the game, the reset_buttons()-function of the ‘Minigame Manager’ is

triggered and all the toggle buttons are reset to the neutral position ‘?’.

Whack-A-Bit minigame

The minigame follows the logic of a ‘Whack-A-Mole’ game: whenever a bulb lights

up, the player needs to click on it before it turns off again to farm the bit. Before

starting the game by clicking the ‘Start’ button, there is also the opportunity to click on

a help button ‘?’ to get an explanation text like in the ‘True or False minigame’.

Figure 59: Whack-A-Bit minigame in-game.

By starting the game, all buttons (bulbs) are invisible and part of the inactive_buttons

array and three timers is triggered: the game_timer, the activate_timer and the

deactivate_timer. The game_timer runs 60 seconds and is also shown on the label in

the downer middle. On timeout, the game ends. The activate_timer runs 2 seconds

and triggers the set_button_active()-function before re-running with a random waiting

time between 0.8 and 1.4 seconds, given by the get_new_wait_time_float(min_value,

max_value)-function. The waiting time needs to be a random float to prevent the

bulbs to light up in time with the game_timer, which would make it too predictable.

50

Figure 60: set_button_active()-function.

The set_button_active()-function chooses a random inactive button (if the

inactive_button array is not empty), removes it from the array, enables the visibility

and starts a block_timer if it is not currently running, which adds the button to the

active_buttons array on timeout after 1 second. This is added to prevent the bulb

from blinking for only a few milliseconds before turning off again, because on timeout

of the deactivate_timer, the same logic but in reverse happens: a random button from

the active_buttons array is chosen, its visibility is disabled and added to the

inactive_buttons array. The deactivate_timer re-runs with a random waiting time

between 1 and 3 seconds, given by the get_new_wait_time_int(min_value,

max_value)-function. If there is only one button active, it is sometimes impossible to

click on the button without the block_timer. By clicking an active button, it is set

inactive and the counter rises by 1. The player needs to farm at least 32 bits to

succeed.

51

Figure 61: Game over screen of the Whack-A-Bit minigame.

6. Testing

No game can be developed without testing. This is the reason why a voluntary testing

session is performed over a longer period of time with different versions of the game

(which are adjusted to the already received feedback).

6.1. Preparations

The finished game is exported into three versions: a Linux, a Windows and a Web

version. The testers can choose which one they wanted to test and download the

Desktop versions as a zip-file or play the web version directly in a browser of their

choice (it is recommended to testers to avoid using Safari since it tends to create

multiple problems based on experience from previous self-executed test sessions).

For the Web version, the game is uploaded to a webserver, which got adjusted to the

recommended configurations described in the Godot documentation.

6.2. Procedure

The game is tested by 30 testers.

After finishing playing the game, the testers are asked to fill in a feedback formular

with the following questions categories:

52

• General questions like tested version & browser, age, total play time, total

rating

• Understandability of game logic

• Game-progress specific questions

• Questions about the Minigames

• Evaluation of the side quests

• Bug report

• Programming questions

6.3. Evaluation

General questions

• Which version(s) did you test? (And which browser did you use?)

The Windows version is tested seven times, while the web version is tested 26 times.

Most testers use Firefox, Edge or Chrome as browser.

• Age

The testers are between 22 and 44 years old.

• Total play time

The fastest run took 25 minutes, the slowest one took 120 minutes. The rest of the

testers has a calculated average play time of 62 minutes ± 22.

• Did you finish it?

22 testers finished the game, four testers could not finish it because of two game-

breaking bugs in an early version.

• Would you say the game loop (order of the puzzles, tasks, how it is arranged)

is logical?

The testers had to pick a number from 1 to 5, 1 meaning “not at all”, 5 meaning

"absolutely”. The rounded average value is 3.9 ± 0.75.

53

• Would you say the main quest (to open the door) is clear from the beginning?

The testers are asked to pick a number from 1 to 5, 1 meaning “not at all”, 5 meaning

"absolutely”. The rounded average value is 4.5 ± 0.99.

• Did you take hints from AL?

Ten testers did not take hints from AL. 15 of the 19 testers, who answered with yes,

took several hints, the remaining four testers only one time.

• Did you have a hard time finding the Bugs (NPCs) in their cave?

Two testers had problems with finding them.

• Did you find the "test code" button right at the beginning?

15 of the 22 testers, who tested an early version, did not find it in the beginning, but

they did find it later in the game.

Four of the eight testers, who tested it after the dialogue change (see section 6.6.,

‘Other Changes’), did not find it in the beginning.

• Did you get the "if" code fragment before you got the remote?

23 testers found it first or could not remember anymore. They are asked if they

noticed the disappearance of the if fragment immediately. Six testers noticed it,

twelve testers noticed it later and four testers thought it was a bug.

Whack-A-Bit minigame

• High score

The rounded average high score is 45 ± 8.

• Did you make it on the first try?

28 testers made it on the first try.

• What is your opinion on the length (60sec)?

The testers had to pick a number from 1 to 5, 1 meaning “too short”, 5 meaning "too

long”, so the ideal value would be 3. The rounded average value is 3.31 ± 0.59.

54

• How much fun did you have during the minigame?

The testers could rank from 1 to 5 stars. The rounded average rank is 4.03 stars ±

0.91.

True or False minigame

• Did you make it on the first try?

23 testers made it on the first try.

• How much fun did you have during the minigame?

The testers could rank from 1 to 5 stars. The rounded average rank is 4.34 stars

±.84.

Evaluation of the puzzles

The testers were asked to pick a number from 1 to 5 in the following questions, 1

meaning “worst”, 5 meaning “best”.

• Getting the inventory

The rounded average value is 4.23 ± 0.67.

• Preventing the war of the Ints (farming bits & trading them for the caster)

The rounded average value is 4.23 ± 1.02.

• Finding Racky

The rounded average value is 3.93 ± 0.91.

• Helping Lu with giving her the Break Condition

The rounded average value is 4.10 ± 1.09.

• Solving Conny’s conflict with Boo

The rounded average value is 4.36 ± 1.01.

• Getting the last code fragment from AL

The rounded average value is 3.54 ± 1.05.

55

• Putting the code correctly together

The rounded average value is 3.79 ± 1.24.

Opinion on the game in total

• What is your opinion on the prologue?

The testers were asked to pick a number from 1 to 5, 1 meaning “unfitting”, 5

meaning “fitting”. The rounded average value is 4.31 ± 0.95.

• What is your opinion on the main game?

The testers were asked to pick a number from 1 to 5, 1 meaning “unfitting”, 5

meaning “fitting”. The rounded average value is 4.38 ± 0.76.

• What is your opinion on the epilogue?

The testers were asked to pick a number from 1 to 5, 1 meaning “unfitting”, 5

meaning “fitting”. The rounded average value is 4.52 ± 0.69.

• How much fun did you have over all?

The testers could rank from 1 to 5 stars. The rounded average rank is 4.23 stars ±

0.76.

Bug report

• Did bugs (errors) occur during your test session?

The testers are given the possibility to describe mayor or minor bugs, which are then

fixed (see section 6.5.).

• Upload possibility for footage (for example screenshots)

• Your name for further enquiry (optional)

I wanted to make the feedback anonymous, so anyone can freely express their

opinion, but for questions considering bugs, this is necessary. Funnily enough, only

five of 30 testers did not insert their name.

56

Programming questions

To check if the game manages to transport an idea of understanding programming, I

added seven codes in different programming languages and multiple-choice

questions.

• Do you have any programming skills?

This question was necessary to separate the programmers from the non-

programmers and to check if the questions were too hard. 13 of 30 testers stated to

have programming skills.

Figure 62: First code question.

The right answer here is the first one, while the second one is only there to test the

programmers since the loop runs eleven times.

Ten of the 13 programmer-testers answered it correctly, while three fell for the trap.

Seven of the 17 normal testers answered it correctly, while six fell for the trap.

57

Figure 63: Second code question.

The correct answers here are the first one and the third one.

Eleven of the 13 programmer-testers answered it correctly.

Two of the 17 normal testers answered it correctly, but another seven of them

remembered the keyword “super”.

58

Figure 64: Third code question.

The correct answers here are the first and second ones.

Twelve of the 13 programmer-testers answered it correctly.

Two of the 17 normal testers answered it correctly, but another seven of them

recognised “numbers” as an array.

Figure 65: Fourth code question.

This code is a lot harder on purpose to test the limits. The correct answer is the third

one. The first one is false because of the “x += 3” at the end of the code block.

59

Seven of the 13 programmer-testers and nine of the 17 normal testers answered it

correctly.

Figure 66: Fifth code question.

The correct answers here are the first and second ones.

Twelve of the 13 programmer-testers answered it correctly.

Three of the 17 normal testers answered it correctly, while three of the remaining 14

testers recognised that “card” gets casted.

60

Figure 67: Sixth code question.

This code is added to test the general understanding while reading a code. The

correct answers are the first and third ones.

Ten of the 13 programmer-testers answered it correctly.

Two of the 17 normal testers answered it correctly and another four of them picked

the first answer, showing that they understood the functionality of this code correctly.

61

Figure 68: Seventh code question.

This code is added to test if the quest to find the missing bracket adds sensitiveness

for brackets in code. The, in my opinion, correct and simple answer is the third one,

but two testers brought forward the argument that - depending on programming

language and development environment – it will print “Answer 1” and crash

afterwards, so I counted these as correct, too.

To make sure that the correct answer is not given accidentally, the testers had to

write down why it crashes when they picked this answer.

Five of the 13 programmer-testers answered it correctly.

Six of the 17 normal testers picked the correct answer, but only one of them gave the

right reason.

62

6.4. Summary of the Feedback

The testers are asked several times in the formular to give feedback on the

minigames and the game in total. Here is a summary of the mentioned topics:

Whack-A-Bit minigame

• It is mentioned that it is sometimes very hard to click a Bit in time, but this is

intended to prevent the game from getting too easy.

• Another tester did not understand the game at first.

• Another topic is additional visual feedback for clicking the Bit.

• When the player plays the minigame before getting the inventory, he needs to

play the game again. However, this happens by design. A suggestion was to let the

NPC, who provides the minigame, store the bits instead.

• Another suggestion is adding a display showing the minimum needed number

of Bits, this is rejected by design to prevent players from stopping to play once they

reached it.

• Testing shows that playing on the laptop without a mouse makes the minigame

harder.

True or False minigame

• Players think it is nice that the questions bear reference to the game.

• Another tester would prefer a more fun minigame but finds it also fitting for an

“educational game”.

• The “This statement is true” question was confusing and thought-provoking, as

intended.

The game in total

• The code solving quest is too hard for non-programmers without a help

system.

• Some programmer-testers try to solve the code by typing in the missing parts

and are confused that it does not work.

63

• One tester mentions that it is a good thing that you cannot mess up so much

that you must start over again.

• Music and sounds are missed.

• One tester does not like the length and speed of the game as it was too slow

in their opinion

• Two testers wish for a better labelling of the teleport areas.

• The testers like the idea, style, setting and humour.

6.5. Occurred Bugs

• The code display overlay is very hard to operate (especially without a mouse)

and the fragments get sometimes stuck between platforms or together with another

fragment.

• One tester got completely stuck under the visual of the construction barricade

and could not move anymore.

• Two testers could get the brackets fragment twice.

• Leaving the game open for too long in a browser sometimes added bugs like

missing triggers.

• Using Firefox leads to not triggering the dialogue, in which the player gets the

last fragment for one tester.

64

6.6. Changes

The following changes are done due to the feedback and bugs.

Code Display (Drag & Drop)

Since the old system throws a lot of errors and is very hard to operate without a

mouse, the draggable script is reworked as follows: the _process()-function calls the

function check_for_click() while the Boolean blocked is false.

Figure 69: check_for_click()-function of the reworked draggable script.

In this function, whenever there is left-mouse click event, two situations are

distinguished: if the variable is_dragging of the ‘DragDrop Manager’ is false and the

cursor is inside a draggable and not occupied (regulated via suitable variables), the

take_dragabble()-function is called. In this function, the z-index is set to 1, the

variables mouse_occupied, blocked and is_dragging of the ‘DragDrop Manager’ is

set to true and the delete-signal for organizing the backend data is emitted together

with the corresponding platform number. While mouse_occupied is true, the global

position of the draggable is set to the global mouse position in the _process()-

function, to make the draggable following the cursor. When another left-mouse click

event happens, the other situation occurs, while is_dragging of the ‘DragDop

Manager’ is true: if the cursor is inside a draggable and the mouse is occupied, the

insert_dragabble()-function is called. In this method, the position of the draggable

gets set to the position of the entered platform, mouse_occupied and is_dragging of

the ‘DragDop Manager’ is set to false, the variable blocked is set to true, the scale of

the draggable is set back to normal and the add-signal for the backend data is

emitted together with the platform number and the draggable resource.

65

Figure 70: take_draggable()- and insert_draggable()-function.

The variable blocked, which has been mentioned multiple times, is necessary to

prevent the draggable from snapping back and forth between the cursor and platform

after clicking one time, because the click is counted multiple frames. It is set back to

false when the cursor leaves the collider of the draggable.

Another change is that the size of the draggable is decreased instead of increased

while hovering over it. This provides the same visual feedback for the player, but it

gets a lot easier to only enter the wanted platform without making the distances

between the platforms exorbitantly big.

Also, an error in reasoning while adding the draggables to the code leads to a bug

sticking draggables together and breaking the game. This bug is discovered recently

but nevertheless fixed successfully.

The feedback makes it clear that it is nearly impossible for non-programmers to solve

the code without any helping system, which is the reason one is added. Clicking the

new ‘?’-button opens the system, in which all code fragments are displayed as

buttons. On click, the respective text appears, explaining what exactly this fragment

is for.

66

Figure 71: Help system for the code display.

This has been added after the first ten tests and got a lot of positive feedback.

Player movement

As already mentioned in the corresponding chapter, the player movement is changed

regarding the game design decision to disable the possibility to change the wanted

destination while the player already moves. This is because of the game-breaking

bug where the tester got stuck under the construction barricade. With the new

system, this can be solved easily by clicking at another area.

Other changes

Another minor bug fix is to add another variable to check if the player already got the

brackets fragment to prevent from getting it twice.

Also, the ‘test code’ button is now mentioned by AL in the beginning as too many

testers did not find it.

All other changes are made because of little errors like spelling mistakes.

67

7. Conclusion and Reflection

In my opinion, the main finding of my thesis is that explaining programming via a

story is possible to a limited extent. Players without any previous knowledge will not

sit at a computer and start programming out of nowhere. But that has never been my

intention. The testing feedback shows that the game manages to give a rough idea of

how programming works to the testers who were able to engage themselves to the

world and the characters. In addition, testers with programming knowledge like the

idea and programmer jokes.

After all, the final game is still a prototype and can be improved and expanded in the

future. Sounds would improve the player experience, which make them an important

enhancement for further development. Nevertheless, I managed to include all the

concepts and quests I wanted to have in the game. Only a few features like a help

system and a guide explaining the characters that are part of the initial concept did

not make it into the game.

Of course, I also want to give my opinion on the technology I used to create the

game. Working with Godot was quite fun and I learnt a lot about it during the

development of ‘Codeventure’. Needless to say, I got sometimes very frustrated

about an error, but this also happens in every other engine and is often a result of not

knowing enough about it (yet). In my opinion, Godot is a very effective tool to create a

2D game and GodotScript is a cleverly done script language, because it is easy to

learn and – once you know a bit about it – also very intuitive. Ink is also a very

effective tool, but in my opinion, it is more suitable for a continuous story like a visual

novel. Always overwriting the ink variables over different dialogues often led to

mistakes, but maybe this is a result of my (currently) limited knowledge and can be

avoided. But writing the dialogues in the editor with the preview feature was always

comfortable.

68

I want to thank Matthias for the help, the useful information and the trust in my

concept, which made this thesis and game possible and Prof. Ralph Lano for not only

providing a wonderful introduction to programming during PROG1 but also being my

second examiner.

I also want to thank my proofreaders Xenia, Laura and Dilara for double-checking my

English and explanation skills.

 A special thanks goes to all my testers – without you it would not have been

possible.

And last but not least I want to thank my family: my father, who awakened my interest

in gaming (yes, I still remember our DOOM session), my sister, who is always

supportive even if she does not understand a word I say, my niece, who changes the

way I see the world in such a lovely way and of course my husband, who awakened

my interest in engineering by teaching me how to build a computer many years ago

and who always has my back covered.

69

8. Acronyms

NPC Non-Playable Character

SCUMM Script Creation Utility for Maniac Mansion

70

9. Bibliography

[1] Wikipedia, 2024. Chris Crawford (Spieleentwickler). [Online]

 URL: https://de.wikipedia.org/wiki/Chris_Crawford_(Spieleentwickler)

 [Accessed: 26 July 2024]

[2] Chris Crawford. “The Phylogeny Of Play”. Lecture. Cologne Game Lab, 2011.

URL: https://www.youtube.com/playlist?list=PL964C40EA265104B4

[Accessed: 26 July 2024]

[3] Linda Liukas. “Hello Ruby. Programmier dir deine Welt”. Bananenblau Verlag,

2017. ISBN: 978-3-946829-04-1

[4] Hello Ruby Oy, n.d.. Books. [Online]

 URL: https://www.helloruby.com/books

 [Accessed: 05 August 2024]

[5] Linda Liukas. “Hello Ruby. Die Reise ins Innere des Computers”. Bananenblau

Verlag, 2017. ISBN: 978-3-946829-08-9

[6] Diana Knodel and Philipp Knodel. “Einfach Programmieren für Kinder (Mit

Buch und Smartphone Programmieren lernen)”. Carlsen Verlag GmbH, 2017.

ISBN: 978-3-551-22077-6

[7] CARLSEN Verlag GmbH, n.d.. Einfach Programmieren für Kinder. [Online]

 URL: https://www.carlsen.de/e-book/einfach-programmieren-fur-kinder/978-3-

646-93321-5

 [Accessed: 05 August 2024]

[8] Diana Knodel and Philipp Knodel. “Einfach Programmieren lernen mit

Scratch”. Carlsen Verlag GmbH, 2020. ISBN: 978-3-551-22083-7

[9] Young Rewired State. “Die Jagd nach dem Code: Programmieren für Kinder”.

Knesebeck GmbH & Co. Verlag KG, München, 2017.

 ISBN: 978-3-95728-043-5

[10] Walker Books Ltd., n.d.. About Get Coding. [Online]

URL: https://getcodingkids.com/the-book/

 [Accessed: 05 August 2024]

[11] Google for Developers, 2024. Blockly. [Online]

 URL: https://developers.google.com/blockly?hl=en

 [Accessed: 25 July 2024]

71

[12] Scratch Foundation, n.d.. Häufig gestellte Fragen (FAQ). [Online]

 URL: https://scratch.mit.edu/faq

 [Accessed: 25 July 2024]

[13] DevTech Research Group, Boston College and Scratch Foundation, n.d..

 Über ScratchJr. [Online]

 URL: https://www.scratchjr.org/about/info

 [Accessed: 25 July 2024]

[14] DevTech Research Group, Boston College and Scratch Foundation, n.d..

Lernen. [Online]

URL: https://www.scratchjr.org/learn/interface

 [Accessed: 05 August 2024]

[15] Microsoft, 2024. MakeCode. [Online]

 URL: https://www.microsoft.com/en-us/makecode

 [Accessed: 25 July 2024]

[16] Microsoft, n.d.. MakeCode Arcade. [Online]

URL: https://arcade.makecode.com/--skillmap#beginner

 [Accessed: 25 July 2024]

[17] Gamefroot, n.d.. Home. [Online]

 URL: https://make.gamefroot.com/

 [Accessed: 25 July 2024]

[18] Dan Milward, 2022. The Gamefroot Blog – Entry, 8 November 2022. [Online]

 URL: https://make.gamefroot.com/blog

 [Accessed: 25 July 2024]

[19] Dave Thornycroft, 2020. Gamefroot’s Updated Interface. [Online]

URL: https://blog.gamefroot.com/blog/2020/gamefroots-updated-interface/

 [Accessed: 05 August 2024]

[20] Neil Fraser, 2023. Homepage. [Online]

 URL: https://neil.fraser.name/

 [Accessed: 24 July 2024]

[21] Neil Fraser, n.d.. Blockly Games: About. [Online]

 URL: https://blockly.games/about?lang=en

 [Accessed: 23 July 2024]

72

[22] Neil Fraser, n.d.. Blockly Games: Puzzle. [Online]

URL: https://blockly.games/puzzle?lang=en

 [Accessed: 23 July 2024]

[23] Charming Holiday, 2023. Minecraft Player Shows Off Incredible Recreation of

Hogwarts in the Game. [Online]

 URL: https://gamerant.com/minecraft-hogwarts-castle-build/

 [Accessed: 09 August 2024]

[24] TeacherGaming LLC., 2015. ComputerCraftEdu Hompage. [Online]

 URL: https://www.computercraftedu.com/

 [Accessed: 23 July 2024]

[25] Donncha, 2015. Learn to program with Minecraft. [Online]

URL: https://odd.blog/2015/07/03/learn-to-program-with-minecraft/

 [Accessed: 05 August 2024]

[26] Fandom, Inc., 2024. Minecraft Wiki – Education Edition. [Online]

 URL: https://minecraft.fandom.com/de/wiki/Education_Edition

 [Accessed: 23 July 2024]

[27] Björn Friedrich, 2019. Mit Roblox Spiele erstellen und coden lernen?. [Online]

 URL: https://www.medienpaedagogik-praxis.de/2019/07/09/mit-roblox-spiele-

erstellen-und-coden-lernen%EF%BB%BF/

 [Accessed: 24 July 2024]

[28] Roblox Corporation, 2024. Creator Hub. [Online]

URL: https://create.roblox.com/

 [Accessed: 05 August 2024]

[29] Matt Weinberger, 2017. Das Videospiel Roblox hat drei Teenager zu

Multimillionären gemacht. [Online]

 URL: https://www.businessinsider.de/tech/das-videospiel-roblox-hat-drei-

teenager-zu-multimillionaeren-gemacht-2017-7/

 [Accessed: 24 July 2024]

[30] Valve Corporation, 2024. Steam: TIS-100 by Zachtronics. [Online]

 URL: https://store.steampowered.com/app/370360/TIS100/

 [Accessed: 26 July 2024]

[31] Zachtronics, 2015. “TIS-100”. Video game.

73

[32] Jan Müller-Michaelis. Das Computerspiel als nichtlineare Erzählform:

Entwicklung und Umsetzung eines dramaturgischen Konzepts. Diploma thesis.

Hamburg University of Applied Sciences, 2006, p. 31.

[33] Jan Müller-Michaelis. Das Computerspiel als nichtlineare Erzählform:

Entwicklung und Umsetzung eines dramaturgischen Konzepts. Diploma thesis.

Hamburg University of Applied Sciences, 2006, pp. 31-48.

[34] The Scientific Gamer, 2020. LucasArts Time Machine: Maniac Mansion.

[Online]

URL: https://scientificgamer.com/lucasarts-time-machine-maniac-mansion/

 [Accessed: 05 August 2024]

[35] Kelly Knox, 2024. Lucasfilm Games Rewind: The Secret of Monkey Island

[Online]

 URL: https://www.lucasfilm.com/news/lucasfilm-games-rewind-the-secret-of-

monkey-island/

 [Accessed: 15 July 2024]

[36] Patrick Lück, 2009. The Secret of Monkey Island: Special Edition im Test -

Auch nach 20 Jahren noch fantastisch. [Online]

URL: https://www.gamestar.de/artikel/the-secret-of-monkey-island-special-

edition-im-test-auch-nach-20-jahren-noch-fantastisch,1957568.html

 [Accessed: 05 August 2024]

[37] Wikipedia, 2024. Day of the Tentacle. [Online]

 URL: https://de.wikipedia.org/wiki/Day_of_the_Tentacle

 [Accessed: 29 July 2024]

[38] Yvonne Viehmann, 2015/2016. Edna bricht aus (2008). [Online]

 URL: http://www.th-

nuremberg.de/mshopf/index.php/GameDesign/EdnaBrichtAus

 [Accessed: 15 July 2024]

[39] Daedalic Entertainment GmbH, 2012. “Edna Bricht Aus - Sammler Edition”.

Video game.

[40] Daedalic Entertainment GmbH, 2012. “Harveys neue Augen Special Edition”.

Video game.

[41] Valve Corporation, 2024. Steam: Fran Bow by Killmonday Games AB. [Online]

 URL: https://store.steampowered.com/app/362680/Fran_Bow/

 [Accessed: 15 July 2024]

[42] Killmonday Games AB, 2015. ”Fran Bow”. Video game.

74

[43] Al Lowe, 1999. The Death of Adventure Games. [Online]

 URL: https://allowe.com/al/articles/death-of-adventures.html

 [Accessed: 16 July 2024]

[44] Valve Corporation, 2024. Steam: Dünnes Eis - Das Spiel zum Song by

Baumann Bergmann Pokinsson. [Online]

 URL: https://store.steampowered.com/app/2961990/Dunnes_Eis__Das_Spiel

_zum_Song/

 [Accessed: 09 August 2024]

[45] Baumann Bergmann Pokinsson and Lorke Records, Inh. Anne Baumann,

2024. “Dünnes Eis - Das Spiel zum Song”. Video game.

[46] CELSYS, Inc., n.d.. CLIP STUDIO PAINT. [Online]

 URL: https://www.celsys.com/en/service/studio_paint/

 [Accessed: 09 August 2024]

[47] Wikipedia, 2024. Motherboard. [Online]

URL: https://en.wikipedia.org/wiki/Motherboard

 [Accessed: 05 August 2024]

[48] Elsevier B.V., its licensors, and contributors, 2024. Bayer Pattern. [Online]

 URL: https://www.sciencedirect.com/topics/engineering/bayer-pattern

 [Accessed: 15 July 2024]

[49] Colin M.L. Burnett, 2006. Bayer pattern for demosaicing. [Online]

URL: https://en.m.wikipedia.org/wiki/File:Bayer_pattern.svg

 [Accessed: 06 August 2024]

[50] National Geographic Society, n.d.. Sep 9, 1947 CE: World’s First Computer

Bug. [Online]

 URL: https://education.nationalgeographic.org/resource/worlds-first-computer-

bug/

 [Accessed: 09 August 2024]

[51] Juan Linietsky, Ariel Manzur and contributors, 2024. Press Kit. [Online]

URL: https://godotengine.org/press/

 [Accessed: 06 August 2024]

[52] Juan Linietsky, Ariel Manzur and contributors, 2024. GODOT. [Online]

 URL: https://godotengine.org/

 [Accessed: 09 August 2024]

75

[53] Juan Linietsky, Ariel Manzur and the Godot community, n.d.. Overview of

Godot's key concepts. [Online]

 URL: https://docs.godotengine.org/en/stable/getting_started/introduction/

 key_concepts_overview.html#doc-key-concepts-overview

 [Accessed: 12 July 2024]

[54] Kron, 2023. “Make Player Move To Mouse Click Position In Godot 3”. Tutorial

video on YouTube, uploaded on 24 February 2023.

 URL: https://www.youtube.com/watch?v=ZI_3yBrw9y8

 [Accessed: 07 March 2024]

[55] Maker Tech, 2024. “Zelda-like CAMERA in GODOT | room transition | fixed

position | tutorial | gdscript”. Tutorial video on YouTube, uploaded on

 27 January 2024.

 URL: https://www.youtube.com/watch?v=knZf_zfPs7o

 [Accessed: 22 February 2024]

[56] Maker Tech, 2023/2024. “How to Make an Action RPG in Godot Season 1”.

Tutorial video series on YouTube, last video uploaded on 06 July 2024.

 URL: https://www.youtube.com/playlist?list=PLMQtM2GgbPEVuTgD4Ln17o

 mbTg6EahSLr

 [Accessed: 15 March 2024]

[57] inkle Ltd., n.d.. ink - A narrative scripting language for games. [Online]

 URL: https://www.inklestudios.com/ink/

 [Accessed: 29 July 2024]

[58] Frédéric Maquin, 2024. inkgd on GitHub [Online]

 URL: https://github.com/ephread/inkgd/tree/godot4

 [Accessed: 9 July 2024]

[59] Nicholas O'Brien, 2022/2023. “Godot & Ink”. Tutorial video series on YouTube,

last video uploaded on 14 December 2023.

 URL: https://www.youtube.com/playlist?list=PLtepyzbiiwBrHoTloHJ2B-

DWQxgrseuMB

 [Accessed: 04 March 2024]

[60] Dicode, 2023. “Godot 4 Drag-and-Drop Tutorial: Create Interactive Games with

Ease”. Tutorial video on YouTube, uploaded on 23 September 2023.

 URL: https://www.youtube.com/watch?v=uhgswVkYp0o

 [Accessed: 29 April 2024]

76

10. Figures

Figure 1: Cover of „Hello Ruby. Adventures in Coding” [4]. ... 3

Figure 2: Ruby travels through the mouse hole [5]. ... 4

Figure 3: Cover of "Einfach Programmieren für Kinder" [7]. .. 5

Figure 4: Explanation of the Scratch programming environment [8]. 6

Figure 5: Code skills explanation page [10]. ... 7

Figure 6: Interface of ScratchJR [14]. .. 8

Figure 7: MakeCode Arcade programming environment [16]. 9

Figure 8: Gamefroot programming environment [19]. ... 10

Figure 9: Blockly puzzle game [22]. .. 11

Figure 10: Interfaces for programming the robot turtles [25]. 11

Figure 11: Roblox Studios engine [28]... 12

Figure 12: Interface of TIS-100 [31]. ... 13

Figure 13: Maniac Mansion with the SCUMM interface [34]. 15

Figure 14: The Secret of Monkey Island, 1990 [36]. .. 16

Figure 15: Day of the Tentacle, 1993 [37].. 17

Figure 16: Edna & Harvey: The Breakout, 2008 [39]. .. 17

Figure 17: Edna & Harvey: Harvey's New Eyes, 2011 [40]. 18

Figure 18: Fran Bow, 2015 [42]. .. 18

Figure 19: Dünnes Eis, 2024 [45]. ... 20

Figure 20: Prologue of Codeventure. .. 21

Figure 21: Start of the Main Game of Codeventure. .. 22

Figure 22: Epilogue of Codeventure. ... 22

Figure 23: Initial design with nine screens. ... 24

Figure 24: Final design with eleven screens. .. 24

Figure 25: Comparison of a motherboard [47] and the background design. 25

Figure 26: Animation sprite of Pixie. .. 25

Figure 27: Bayer Pattern [49]. ... 26

Figure 28: AL. .. 26

Figure 29: Chi with and without ribbon. ... 27

Figure 30: Boo; true and false. .. 27

Figure 31: Lacky. ... 28

Figure 32: Racky. .. 28

77

Figure 33: Lu before and after helping her. ... 29

Figure 34: Conny. .. 30

Figure 35: Design of the Bugs. .. 30

Figure 36: Design of the Ints. .. 31

Figure 37: Overview of all items which are relevant for the game progress; from left to

right: caster, break condition, remote, Boo’s key, Pa’s key, bits. 31

Figure 38: Overview of all collectable code fragments; from left to right: this, int,

while, if, bool, brackets. ... 32

Figure 39: The pseudocode which opens the door. ... 32

Figure 40: Design of the opened inventory GUI. ... 33

Figure 41: Design of the construction barricade which blocks the bridge. 34

Figure 42: Design of the casted One. .. 34

Figure 43: The Bugs in their cave. .. 35

Figure 44: Boo and Conny reconciled their differences. .. 36

Figure 45: The correct code got tested. .. 36

Figure 46: The Godot engine logo [51]. ... 37

Figure 47: Scene tree of the main game of Codeventure. ... 38

Figure 48: _physics_process()-function of the player script. 39

Figure 49: Structure of the world in Godot including the teleportation and spawn

areas. .. 41

Figure 50: update()-function of the inventory GUI script. ... 42

Figure 51: Additional functions of the inventory GUI script. 43

Figure 52: Design of the inventory slot background; empty and full. 43

Figure 53: ink logo [57]. ... 44

Figure 54: Second dialogue of AL written in the Inky editor. 45

Figure 55: Second dialogue of AL in the preview window of the Inky editor. 45

Figure 56: Structure of the corresponding nodes in the scene tree. 46

Figure 57: _process()-function of the draggable script. ... 47

Figure 58: True or False minigame in-game. .. 48

Figure 59: Whack-A-Bit minigame in-game. .. 49

Figure 60: set_button_active()-function. .. 50

Figure 61: Game over screen of the Whack-A-Bit minigame. 51

Figure 62: First code question. .. 56

Figure 63: Second code question. ... 57

78

Figure 64: Third code question. ... 58

Figure 65: Fourth code question. .. 58

Figure 66: Fifth code question. .. 59

Figure 67: Sixth code question. ... 60

Figure 68: Seventh code question. .. 61

Figure 69: check_for_click()-function of the reworked draggable script. 64

Figure 70: take_draggable()- and insert_draggable()-function. 65

Figure 71: Help system for the code display. ... 66

